If it's not what You are looking for type in the equation solver your own equation and let us solve it.
j^2-18j+47=0
a = 1; b = -18; c = +47;
Δ = b2-4ac
Δ = -182-4·1·47
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{34}}{2*1}=\frac{18-2\sqrt{34}}{2} $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{34}}{2*1}=\frac{18+2\sqrt{34}}{2} $
| 10=18r−8 | | F(1)=x-13 | | 21y-84=-4y-30 | | 7p^=21p | | 2/5(j+40)=-4 | | u^2-7u=18 | | n(5n^2-30n+40)=0 | | 5t+16=6 | | 3x-5(4)=15 | | 3b^2=-b+10 | | 3p-5p=7 | | 6m+2.5m=41 | | 12x-20+110=360 | | -4(2t-5)+2t=8t-7 | | 4^x+4^(x-1)=40 | | a-5.5=17.3 | | w4-5=11 | | 10(9−y)=20 | | 110-×=x+100 | | 6k^+k=0 | | x+1/4=6.75 | | z/6=2.5 | | 2s-25=-s=26 | | 8w-2-12w+9+4w-3=5 | | 2/3×x=14 | | -165-9x=8x+56 | | -84v-18=3v+20 | | 16+7x-5+x=11-3-2x | | 2/5z=41/4 | | 3(k-4)=48 | | 2m=88 | | -3t+-8=-22 |